Gnarly Data Waves

Episode 23

|

June 27, 2023

Getting Started With Dremio Data Reflections

For analytical workloads, data teams today have various options to choose from in terms of data warehouses and lakehouse query engines. To enable self-service, they provide a semantic layer for end users, usually with materialized views, BI extracts, or OLAP cubes. The problem is, this process creates data copies and requires end users to understand the underlying physical data model. 

Join the Dremio engineering team in this episode of Gnarly Data Waves to learn about accelerating your queries with data reflections. Get answers to business questions faster without the challenges that come with today’s approach, such as governing data copies or managing complex aggregate tables and materialized views.

In this episode, you will learn:

    1. The importance of data reflections and how it removes the need for data copies

    1. When to use raw reflections and aggregate reflections

    1. Best practices on data reflection refreshes

Watch or listen on your favorite platform

Register to view episode

Ready to Get Started? Here Are Some Resources to Help

Infographics Thumb

Infographic

Quick Guide to the Apache Iceberg Lakehouse

read more
AnalystReports Thumb

Analyst Report

It’s Time to Consider a Hybrid Lakehouse Strategy

read more
CaseStudies Thumb

Case Study

Navigating the Data Mesh Journey: Lessons from Scania’s Implementation

read more
get started

Get Started Free

No time limit - totally free - just the way you like it.

Sign Up Now
demo on demand

See Dremio in Action

Not ready to get started today? See the platform in action.

Watch Demo
talk expert

Talk to an Expert

Not sure where to start? Get your questions answered fast.

Contact Us

Ready to Get Started?

Enable the business to create and consume data products powered by Apache Iceberg, accelerating AI and analytics initiatives and dramatically reducing costs.