Tuning Row-Level Operations in Apache Iceberg

Companies leverage Apache Iceberg to build reliable and efficient data lakes with features that are normally present only in data warehouses. As users begin to use Apache Iceberg in a bigger range of data processing scenarios, it is essential to support efficient and transactional delete/update/merge operations even in read-mostly data lake environments.

This talk will be a deep dive into the copy-on-write and merge-on-read approaches for executing row-level operations in Apache Iceberg so that users can pick the correct implementation for a given use case. In addition, the presentation will help data engineers to avoid common mistakes and tune delete/update/merge operations at scale.

Topics Covered

Table Formats
Unlocking Potential with Apache Iceberg
get started

Get Started Free

No time limit - totally free - just the way you like it.

Sign Up Now
demo on demand

See Dremio in Action

Not ready to get started today? See the platform in action.

Watch Demo
talk expert

Talk to an Expert

Not sure where to start? Get your questions answered fast.

Contact Us

Ready to Get Started?

Enable the business to create and consume data products powered by Apache Iceberg, accelerating AI and analytics initiatives and dramatically reducing costs.